

Demonstrating Synergies in Combined Natural and **Engineered Processes for Water Treatment Systems** 



# **Combined River Bank Filtration and Ultrafiltration for** drinking water treatment

#### Challenges for drinking water treatment

- 40% of drinking water production in Dresden is based on bank filtration
- Climate change predictions indicate an increased likelihood of extreme events, i.e. floods and droughts in Europe like in 2002, 2013 and 2018

#### Demonstrated solution and aim of the study

- River bank filtration (RBF) is effective in removing organic pollutants but could face microbial breakthroughs during extreme hydrologic events
- Increasing peak demand and quality requirements for drinking water
- An economically efficient and safe indirect use of surface water must be adapted to remove emerging pollutants

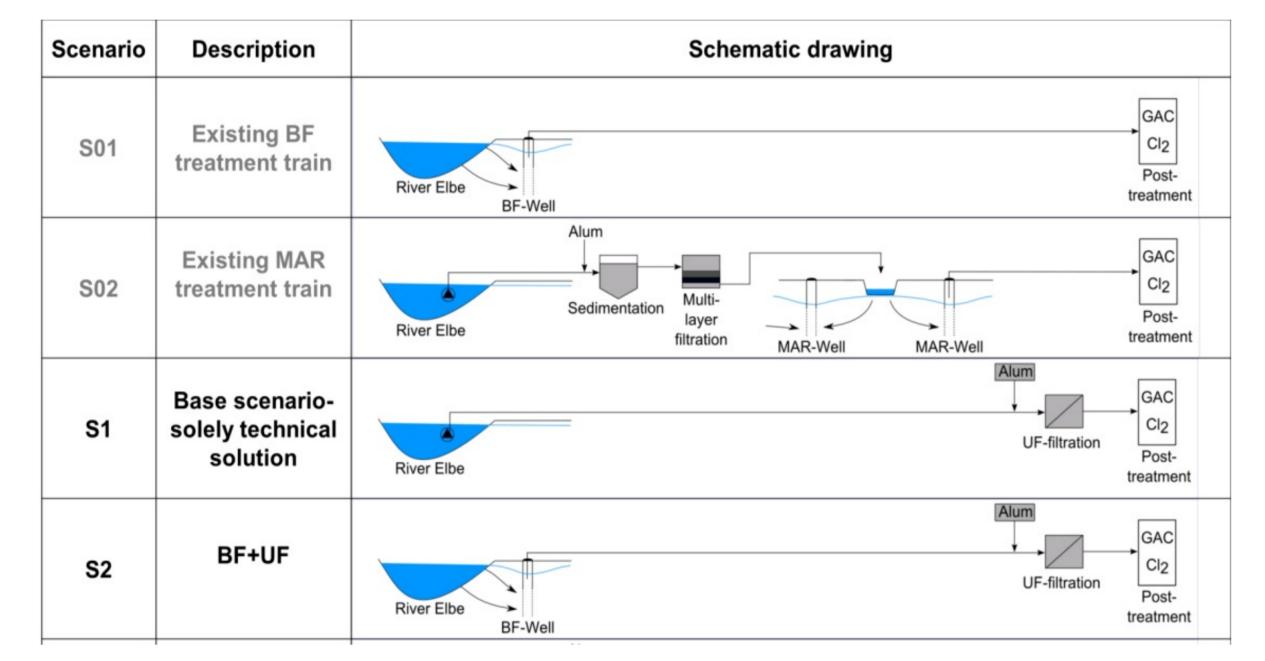



Figure 1: UF-pilot scenarios for AquaNES with treatment trains at waterworks Dresden-Hosterwitz (S01 & S02) with Managed Aquifer Recharge (MAR)

### Methodology

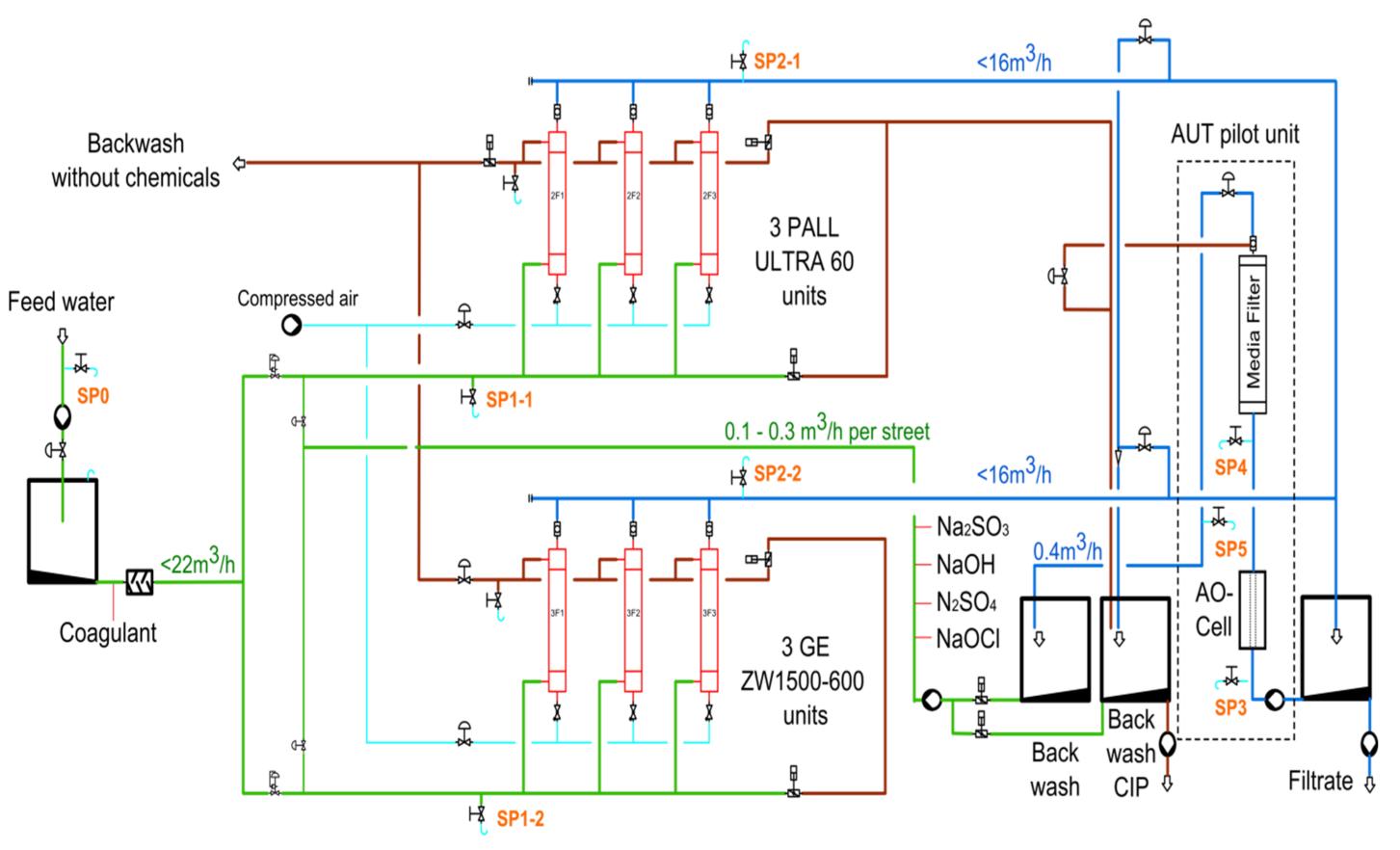
Investigation of cNES at fully automated semitechnical operated pilot plant with parameters shown in Tab. 1 and scheme in Figure 2

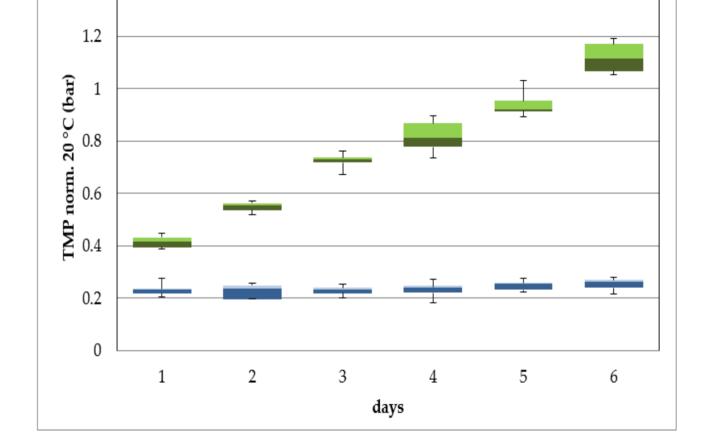


- Ultrafiltration (UF) is reliable in particle removal and microbiological contaminants even during extreme events
- Demonstrate the cNES innovation of combined RBF and UF as reliable multi-barrier against pathogens independent of climatic extremes
- Highlight the advantages of RBF for the cost effective operation of UF membranes: reduced fouling potential, lower energy consumption and combined removal rates

#### Performance and results

Table 2. Water quality for feed water and permeate from the ultrafiltration


| Parameter             | Feed            | Permeate        |         | Feed     | Permeate |          |
|-----------------------|-----------------|-----------------|---------|----------|----------|----------|
| (average values)      | Elbe $(n - 14)$ | UF 1<br>(n = 9) | UF 2    | BF       | UF 1     | UF 2     |
|                       | (n = 14)        |                 | (n = 9) | (n = 17) | (n = 17) | (n = 17) |
| Colif. bac. [1/100ml] | 3814            | 0               | 0       | 16       | 0        | 0        |
| Turbidity [FNU]       | 9.8             | 0.1             | 0.1     | 0.5      | 0.1      | 0.1      |
| DOC [mg/l]            | 4.9             | 4.8             | 4.8     | 2.2      | 2.2      | 2.2      |
| Mn [mg/l]             | 0.3             | <0.01           | <0.01   | 0.1      | 0.1      | 0.1      |
| Cell-bound ATP[RLU]   | 11880           | 45              | 37      | 84       | 32       | 28       |


#### Table 1. Technical set-up

| Set-up          | Unit                | UF pilot plant          |                         |  |
|-----------------|---------------------|-------------------------|-------------------------|--|
| Street          | [-]                 | 1                       | 2                       |  |
| Manufacturer    | [-]                 | GE                      | Pall                    |  |
| Material        | [-]                 | PVDF                    | PVDF                    |  |
| Capacity/Street | [m <sup>3</sup> /h] | 15                      | 15                      |  |
| Units           | [-]                 | 3                       | 3                       |  |
| Membrane area   | [m <sup>2</sup> ]   | 60                      | 55.7                    |  |
| Discharge       | [m <sup>3</sup> /h] | 2-6                     | 2-6                     |  |
| Calculated flux | [L/(m² h)]          | 30-80                   | 30-90                   |  |
| Feed water      | [-]                 | River+BF+<br>Infiltrate | River+BF+<br>Infiltrate |  |



- Total capacity of the pilot plant 20 m<sup>3</sup>/h with flow direction OUT/IN
- MN removal by In-line electrolysis cell
- Online measurement of all operating parameters
- Lab analytics of selected microbiological and organic parameters
- Measurement of microbiological parameters: adenosine triphosphate (ATP), BACTcontrol and flow cytometer





1.4

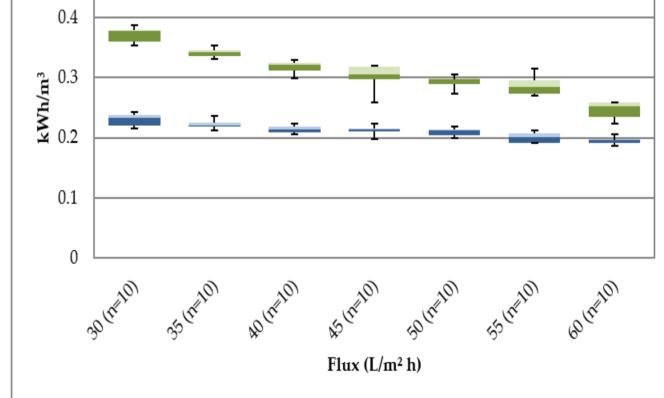



Figure 3. Transmembrane pressure for UF 1 during filtration of Elbe water (green) and BF (blue), flux 50 L/m<sup>2</sup>h

Figure 4. Energy consumption per m<sup>3</sup> filtrate produced from Elbe water (green) and BF (blue) with identical operation settings of UF 1 & 2

- Almost complete removal of turbidity and bacteria (coliforms, ATP) independent of feed water quality (Table 2)
- Higher DOC and bacteria counts in feed water (Elbe river) leads to a higher fouling potential (0.14 bar/d) compared to bank filtrate as feed (0.005 bar/d)
- In-line electrolysis cell by AUTARCON reduces dissolved manganese in the permeate (< 0.01 mg/l) to protect the membrane from fouling (Figure 3)
- Energy consumption decreases with increasing flux to 0.19 kWh/m<sup>3</sup> for bank filtrate and to 0.25 kWh/m<sup>3</sup> for Elbe river water

#### Conclusions

- Feasibility of combining RBF and UF has been demonstrated
- cNES leads to a more efficient and economically feasible water treatment for safe drinking water production

#### Contact

Robert Haas DREWAG NETZ GmbH Rosenstr. 32, 01026 Dresden Robert\_haas@drewag-netz.de

Figure 2. Set-up of UF plant with in-line electrolysis cell by AUTARCON





## www.aquanes.eu

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 689450

