

Electrical Pulse Oxidation Process (EPOP) – an alternative pretreatment for soil-aquifer treatment in indirect potable reuse

What is EPOP?

- High voltage electrical pulses combined with oxygen gas are being discharged though multiple hollow electrodes
- Formation of radicals (OH*) and other strong oxidants
- Generation of ozone as a secondary oxidant

Application case and expected benefits

• Treatment of secondary effluent after bio-filtration in the Shafdan water reuse site (Figure 1)

No or minimal disinfection byproducts (DPBs) formation

Reduction of trace organic contaminants

Figure 1: Scheme of the Shafdan demonstration site

* SAT Column and BAC UF were not connected

Technical demonstration

• Effluent Feed: 0.6-3 m³/h, oxygen feed: 10-30 LPM

- Laboratory and field measurements of UVA₂₅₄,
 0.45 μm filtered UVA₂₅₄, DOC, DO, NH₄, NO2,
 NO₃, TrOCs, NDMA, BrO₃, microbiology and toxicity
- Power consumption of 1.5 to 2.5 kWh/m³

Figure. 2 EPOP system

		TrOCs (@TZW unless otherwise specified)									
Date	Sampling Point	CBZ	BZF	IPRM	SMX	DCF	Naproxen	Ibuprofen	IHX	IPDL	
		ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	
	Secondary effluents	460	120	8000	120	870	560	150	36000	18	
12 2 10	WADIS filtration tank	510	230	9300	220	840	700	570	24000	22	
12.2.19	WADIS product tank	0	0	1700	0	0	0	17	6600	0	
	% removal	100%	100%	82%	100%	100%	100%	97%	73%	100%	
	Secondary effluents	550	120	11000	150	900	630	220	41000	42	
19.2.19	WADIS filtration tank	600	150	7400	170	1100	650	310	31000	36	
19.2.19	WADIS product tank	61	17	8700	12	16	15	140	36000	30	
	% removal	90%	89%	0%	93%	99%	98%	55%	0%	17%	
	Secondary effluents	730	94	7500	200	1400	510	160	26000	30	
26.2.19	WADIS filtration tank	790	110	6400	250	1600	590	230	25000	27	
20.2.13	WADIS product tank	150	17	4700	110	260	75	95	18000	28	
	% removal	81%	85%	27%	56%	84%	87%	59%	28%	0%	
	Secondary effluents	750	450	9400	250	1200	590	220	31000	71	
5.3.19	WADIS filtration tank	640	360	9300	210	990	600	310	27000	47	
5.5.19	WADIS product tank	83	54	3600	40	130	67	81	5100	22	
	% removal	87%	85%	61%	81%	87%	89%	74%	81%	53%	
	WADIS filtration tank	690	250	6800	200	1000	740	140	20000	32	
12.3.19	WADIS product tank	0	0	130	0	0	0	0	580	0	
	% removal	100%	100%	98%	100%	100%	100%	100%	97%	100%	
	Secondary effluents	710	290	12000	200	1100	510	160	40000	74	
19.3.19	WADIS filtration tank	710	250	10000	230	1100	670	190	32000	74	
19.5.19	WADIS product tank	0	11	4700	0	0	0	0	17000	36	
	% removal	100%	96%	53%	100%	100%	100%	100%	47%	51%	

Results

EPOP Effectively removed various micropollutants and microbiological parameters:

BioF2

EPOP

SAT

- 0.45µm filtered UVA₂₅₄ reduction of 40%-67% (Figure 3)
- TrOCs removal of 80%-100% (Table 1),
 (Figure 4,5)
- Microbiological full reduction (Table 2)
- Results are before EPOP treatment and after EPOP treatment

(No SAT Column or BAC UF)

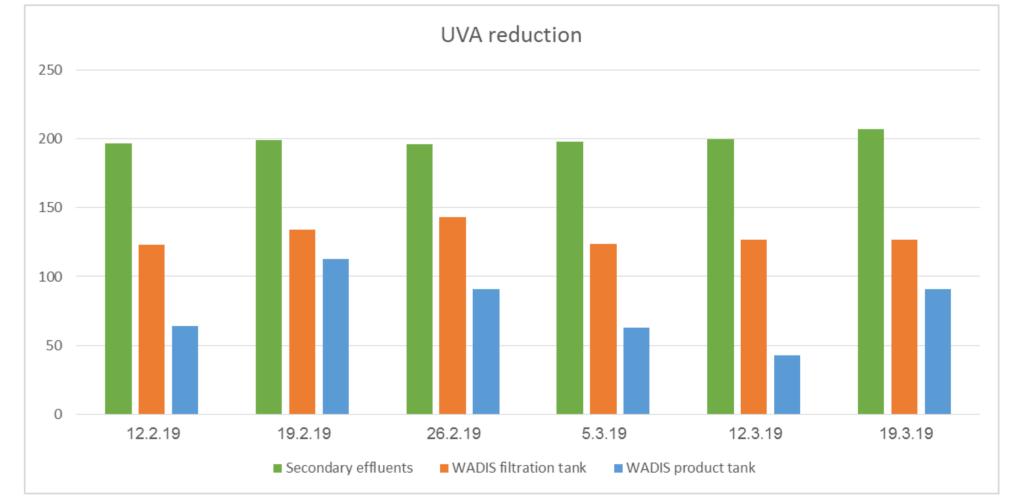


Figure 3. 0.45µm filtered UVA254 reduction

Conclusion

 WADIS EPOP system reached satisfactory results more than expected for the parameters tested although not in it's final operation capabilities

Table 1: TrOCs Removal, Average flow rate: 2 m³/h, Average power consumption: 1.8 kWh/m³

• Further developments will insure even better results

100% 80% 60% 40% 20% IPDL IHX IPRM Ibuprofen Naproxen BZF CBZ DCF SMX

TrOCs % removal

Figure 4 TrOCS comparison EPOP to Ozonation 19.3.19

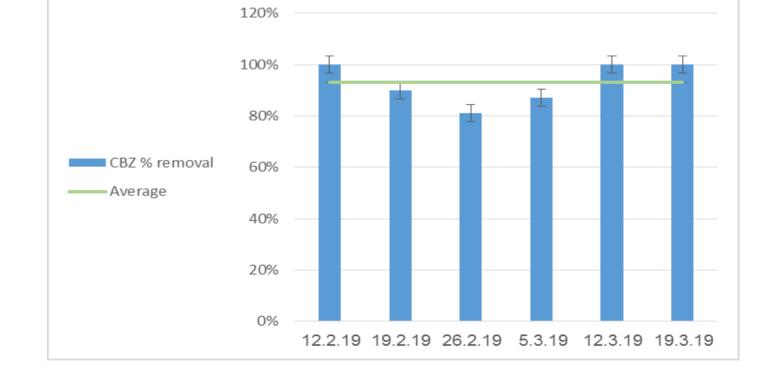


Figure 5. CBZ Removal

Contact

WADIS Ltd.
3 Golda Meir Str. Science Park,
7403648 Nes Ziona, Israel
T +972-8-9313010
www.wadis-co.com

_								
	Sampling Point	Total Bacterial Count	Coliform	Fecal Coliform	Fecal Streptococcus	GIARDIA	CRYPTOSPORIDIUM	
	Control	6600	1700	33	<1.8	0.80	0.40	
	OZONATION	70000	79	5	0	0	0	
	% removal	0%	95%	85%	ND	100%	100%	
	WADIS	120	0	0	0	0	0.6	
	% removal	98%	100%	100%	ND	100%	0	

Table. 2 microbial comparison EPOP to Ozonation 19.3.19

